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I, INTRODUCTIQON
During the preceding contract year, three tasks have been undertaken.

They are: ‘

1) Applications Pevelopment System (ADS) Analysis,

2) Algorithmic Development,

and 3) Evaluation of Technical Reports.

| - Task 1 (see Section II) consisted of a detailed study of the needs of EOD
with respect to an applications development system (ADS) for the analysis
of remotely sensed data; followed by an evaluation of fouk existing systems
(ERIPS, ASTEP, LARSYS batch, and LARSYS 3) with respect to these needs; and
concluded with a set of recommendatiens as to possible courses for EQD to
follow to obtain a viable ADS. Task 2 {(see Section I1I) comprised several
subtasks of which three were continuations of projects initiated during our
first year's contract. These include two algorithﬁs for multivariate density
estimation, a data smoothing algorithm, a method for optimally estimating
prior probabilities of unclassified data, further applications of the modified
Cholesky decomposit{on in various calculations, and a few other projects.
Little effort was expended on task 3 (see Section IV} due to a shift in. priori-
ties mostly necessitated hy the increased effort devoted to task 1. However,

two reports were reviewed.

This report summarizes both the efforts and the findings of the above

project. Each of the tasks are described in. the following sections.

- /__,
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II. TASK 1: Applications Development System Analysis

This study (see the Task 1 Final Report) describes the results of a
detailed study of the needs of EQD fdr an applications development system
(ADS), including a detailed evaluation of four existing systems (ERIPS,
ASTEP, LARSYS batch, and LARSYS 3) with respect to these needs. Suggested

‘courses of action are proposed for the EQD to pursue.
The original task definition in the contract called for:

1)  Developing a set of design goals for an applications
. development system (ADS),
2} Evaluating ASTEP and the LARSYS batch programs to
determine whether either met these qoals,
3) Recommending courses of action for the future of these
systems:
a) If neither system meets tﬁe design goals,
develop a system design for an ADS that does;
b) Determine the mutual impact of this system on
either the IBM 360/75 under RTOS or the UNIVAC
1110 under EXEC 8;
c) Develop a recommended approach to the development
of a data analysis ADS at JSC,
4) Determining whether a terminal to ASTEP, a LARS terminal,
or set of batch programs is the most desirable methbd of
transporting remote sensing ADP technology to an agency

establishing a program in remote sensing.

This task definition was later modified to include ERIPS and LARSYS 3

in the evaluation study and to exclude item 4 above.
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It is important to remark here that some specific constraints of the

EOD's were not taken into account in this studv. Such considerations not

involved in any quantitative fashion in this analvsis include:

1)
2)

3)
and 4)

cost of implementing recommended modifications,

system performance and resnonse as a function of number
of users,

availabilitv and canacity of hardware,

specific hardware implementations.

The method emploved for conducting this study was to adopt a "top-down"

anpproach to the evaluation process. This consisted of:

1)

5)

Developing design goals for an ideal ADS. These goals

represent general areas of interest that such a system must

address, and are not of themselves nrioritizable.

Detailing supporting design cbjectives for those design goals.
These objectives are specfic functional capabilities that

an ideal ADS should have.

" Prioritizing these desian objectives with respect to the

needs of EOD,

Rating the various systems on each of the design objectives

to indicate how well each satisfied the requirements of each
objective.

Recommending alternative courses of action for the EOD to

follow based on the ahove findings,



Before discussing further the methodology emploved and the resuits of
this task, it is important to establish a framework for the ideal ADS.
Such a system will be used to develop and test new algorithms and procedures
for various remote sensing applications. Its basic characteristics should
include that it be easﬁ to use for a wide Qariety of perSonne],_actessib]e
and responsive to users, reliable, and as flexible and comp]ete a svstem
as possible. The system must serve two kinds of users - production and
techniques'déve1opment personnel. The production user needs to be able
to efficiently process large amounts of data using state-of-the-art
techniques. He requires that results be in form suitable for presentation
or further analysis. The techniques development person, on the other hand,
needs a system where he can thoroughly test ahd evaluate new algorithms and
techniques. The system thus should he eési1y modifiable and require the
user to have only a minimum of knowledae of the internals of the system.
The user should be able to easily add, de]ete,&rep1ace, or modify any of
the algorithms in use for his own purposes, while assuring the integrity

of the standard system.

The design goals were established te present general areas that a

TDS should address. These areas are, in summary:

i)  Combination of production and test systems in a unified framework,
i1}  Simplification techniques for system maintenance and enhancement,
i{i) Data and system management facilities,
iv) Graceful degradation features,
v} Convenience features,
vi)  System measurement and evaluation features,

vii) Basic system analysis functions.



These goals as such are not prioritizable since they do not represent specific
functional capabilities. The design objectives, on the other hand, are
prioritizable. Thev are snecific canabilities for an ideal ADS to have.
These objectives were then prioritized according to the needs of the EQOD

program objectives. Ratings of from one to four were assigned where the

ratings are:

Prio?ftv Description
1 Necessary to achieve EOD prodram objectives
2 '_ Necessary to achieve a high Tevel of EOD's
program objectives
3 Desirahle feature
4 Questionable tesirability

The varibus systems were then rated on each of the design objectives. Ratings.

were assigned from zero to five in the basis of how well each system functionally

met each objective. The rating codes and their meaninas are:

Rating Meaning
5 : Exceeds renuirements of this objective
4 Meets all éequirements of this obiective
3 Satisfies most of the requirements of this objective
2 Satisfies some of the requirements of this chjective
1 Satisfies only a sma11'portion of the requirements

of this objective
0 Does not have any such capability as specified
bv this objective,

The results of this evaluation process comnrise the bulk of the Task 1 final

report. These findings are briefly summarized below.
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ERIPS possesses several key features, notably an extensive,'interactive
imaging capability and an abundance of user convepience featufeé;' Though
ERIPS is highly modular, it was not designéd for modification by the user
community: most of the coding is in a specia1]yﬂdesigned assembler language
and the programming skill necessary to understand the-interna]éldf tﬁé-r~
system are far bevond the average uger. ' R

ASTEP, on the other hand, was written mostly in FORTRAN V'and‘the
coding is fe1ative1y gasy to deciphér.“However, no modiffcation Qids_for ‘
the.u§er are available and:documentétibn i§ not very extensive, Thbugh
ASTEP can be run in an interactive mode, the use of tapes is Timited by
operational difficulties and, thus, svstem use is limited. Addi;iona1]y,
no interactive imagina capabilities exist. A |

The LARSYS batch nrograms were also written mostly in FORTRAN V.

.However, very 1ittle documentation exists on these programs, thus makihé
modification a difficult chore. The most serious problem with these
programs is that though many functions .are avaiiab]e, tﬁéy are not in a
unified system, which creates a myriad of problems for users and
prdgrammers alike. The Tack of interactive and interactive imag{ng
capabilities further hampers the utilitv of these programs.

LARSYS 3 possesses manv of the essential features of the ideal ADS.
It too is written mostly in FORTRAN, and extensive documentation is readiTy
available. A varietv of mndification aids eases somewhat the uéer's task,
but other such features do not curréntTy exist._:The"syétém is relatively
easy tb use, has several modes of operation, and a training program is
available. An interactive, imaging device exists'at Purdue, but none are
supporﬁed elsewhere. It is presentlv lacking in basic systems analysis

functions available, but the structure exists for later adding these.



Thus, in terms of which system cores c]psest to meeting the requirements
for an ADS, LARSYS 3 appears to be the most suitable in principle. 4If LARSYS 3
is to be used most effectively asan ADS, it is worth examining  what modifications
are necessary to further enhance its utility, and how difficult would such
mddifications bé to make. This study would indicate thaf modifying LARSYS 3
in several speciffc areas would producean ADS which would satisfy most of
the needs of E0D. The major areas of modffication include adding more
analysis fUnctions, adding a more extensive imaging capability, improving
the modifiability chafacteristics of the system, probably converting the
system to run under the IBM Time Sharing Ontion (1TS0), and installing it
on IBM 370/158 or 168. These Tatter two modifications are to allow EOD to
have their own system locally with mainline IBM support and file compatibility
with other IBM computers (because of using TSO rather than CMS). Compared
with operating remotely from Purdue, this would eliminate difficult prob]ems
of.supporting remote interactive imaging  devices, transferrin§ bulk data
over Jona distancés, configuration control and future growth of the system;‘
and oﬁér]oading the system at Purdue. This may well represent the best
courses of action for ECD in terms of canabilities for satisfying their
needs foran ADS.

If the above is not possible, one alternative method would be to provide
an interactive image display tied into the LARSYS 3 system at Purdue. This
would require intelligent (perhans specially designed) terminals to effectively
provide this abilitv over the long distances involved,and high bandwidth
communication 11nes; Other modifications to the sysfem as suggested above
‘could be made to LARSYS to increase its utility. However, difficulties may
be encountered in the areas of overloading the svstem and transportation of
data back and férth.. Such a configuration would have a substantially lower
throughput and turnaround capacitv, but mav be suitable for relatively low

volume demand.



Two other possiblities for an interactive ADS suggest themselves:
build an entirely new system based on the ideal design goals and objectives
contained in the Task 1 report, or radically modify the internals of ERIPS.
Developing a new system based on the established design objectives would
be a véry costly pnroject both in time and money, but it would probably
provide a very effective means of doing techniques development work.
Modifications necessary to effectively utilize ERIPS asan ADS consist of
estabTishiﬁq terminals in Building 17 and providing users with the capability
to work with the internals of the svstem. The latter would entail re-
programming all algorithmic routines into high level language; providing
interfaces'to other system routines which would allow users to perform
such tasks as menu generation dsinq only the high level langquage; and
addiﬁq numerous other capabilities to the system. We do not highly
recommend this approach since it anpears that a relativelv large amount
of effort must he exnended,‘and the resulting svstem would still not be
entirely satisfactory from the modifiability standpoint.

Modification of either ASTEP or LARSYS batch is not recommended. The
basic structures of both of these would not be able to accomodate the
necessary modifications. However, narts of these systems, particularly
some of the algorithms, could be used with minor modifications in developing

a new system or as additional functions in LARSYS 3.
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ITT. TASK 23 A]gorithmic Development

Non-parametric density estimation:

Two methods of attackina this problem are being investigated. -The aim of
these projects is to provide a computatjona}ly viable way of estimating
multivariate density functions fram re1ﬁf1ve]y Sm$1] sample sizes, and then
to devise a classifier using this model rather thdh fhe standard Raussian
one. Such a classifier could significantly increase c]assification atcuraqy
and also enable one to avoid snlitting and later recombining multimodal classes.

The present efforts are directed towards estimating the densities with
1ittle concern being given to computational efficiencv. It is felt that - |
once such algorithms can be effectively used, methods for greatly increasing
their efficiency will be developed or special purpose hardware could be

designed.

a) This algorithm (see the "Estimation of Multivariate Probabilitv Density
Functions Uéinq B;SpTines” by J. 0. Bennett} estimates a p-dimensional
density function given n randoﬁ p;veéfbrs of data. The data is first
transformed to make it pseudo-indenendent (the covariance matrices are
transformed into identity matrix ). Then a p-dimepsional density kernel
estimator is used with a n-fold tensor product of B-splines as basis functions.
The estimator is hroven-to be consistent in the integrated mean square error
sense.

This method developed from an earlier algorithm - snline smoothing of
histograms. ‘The difficulty with thé previous method was that in mény
dimensions,‘histogrammihq.becomes an arduous task because of the number
of bins involved, Thﬁs, though this algorithm functioned quite well in
oﬁe dimension, the results were not readily extendable to the multi-

dimensional case. - The new algorithm avoids the histogramming problem entirely.
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A11 of this leads to an algorithm which yields a "good" estimate of a
multivariate density function even with small sample sizes of training data.
This algorithm has been implemented and tested using random numbers from a
variety of distributions. Performance has been quite satisfactory. It
has‘aiso been installed in the version of LARSYS operating on Rice University's
IBM 370/155 to cbmpare it with Gaussian maximum 1ikelihood classifier.
rResults of these tests showthat, though the B-spline estimator is relatively
slow, its performance on "Gaﬁssian-1ike" data is comparable to a Gaussian
estimator; whereas on other distributiens (e.a., himndal), its performance

is significantly better.

The algorithm as presently implemented in the classification section
of LARSYS is slow. This is mainly due to the fact that the estimate of
the value of the density function of a class fbr an arbitrary data point
involves (1) a rotation of the data vector, and (2) the calculation of the
value of a cubic B-spline for each dimension and each data vector from the
training sampies. Fhr Jarge training sample sizes, the second of these
features can entail a very large amount of cnmﬁutatinn. However, a few
points sﬁqqest ways for alleviating this problem. First of all, cubic
B-splines have finite sunport and thus need not always be explicitly
evaluated, Also, schemes for ordering the training data can be used to
avoid performing many of the computations. In addition, for many applications,
one can use linear basis functions instead of cubic, thus considerably reducing

the number of computations necessary.

At this pofnt, we can suggest guarded optimism for the applicability and
usefulness of this algorithm in remote sensina applications. More testing with
remote sensing data needs to be done to determine how generally successful the
algorithm is in the environment. Improvements to this algorithm are currently

being investigated.
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b} In this studv we consider the problem of estimating the probability functions

o L1[a,b] which gave rise to the random samples {;],xz, cee WX }
: n

The interval {a,b] mav be either infinite or finite.
Recall that-bv  L(v) , the Tikelihood that v « Ll[a,b] nave rise to
the sannies {ET’X”’ e aX }; we mean

N

L{v) = T v{xy)

i=1

Let S be a manifold in L1[a,b] - . By the maximum Tikelihood estimate

corresponding to the samnles {g], cew s X } and the manifold S, we mean the

n

solution of the following optimization probTem:

maximize L(v); subject to
b
veS,v(t) 20 Wt . [a,b] and J vit) dt = 1

a

It is well-known that the narametric likelihood estimate (S fs finite dimensional)
~is well defined. However, a finite dimensional manifold does not anpproximate
well., Hence it makes sense‘to consider nonparametric maximum 1ikelihood
estimation (infinite dimensional S). <¢learlv, if the manifold S can approximate
the Dirac delta furiction, f.e., contains ncnnegative functions hhose sunport

is a given small interval centered at x ¢ [a,b] , integrate to 1 and have
arbitrarily large values at x, then our optimization problem has no solution.
Moreover, -this approximation propertv is enjoved by most infinite dimensional
manifolds in LT[a,b} ' : hence, we should not expect the nonparametric
maximum 1ikelihood estimation problem to have a solution. The situation in

present-dav annlications s actuallv worse, for it is often the case that in
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the parametric case we choose S from a seauence of manifolds {Sm“}

- -]

where the dimension of Sp s m, S, < S,q  and 21 S is
dense in L][a,b] s hence the problem is definite]y unstable and
somewhat i11-defined. MNamely we are motivated to choose m large so that
’we can better apnrokimate the probability density giving rise to the
samp1es§ however, for a large m the problem approximates a problem which

has no solution.

The previous remarks motivated the maximum penalized 1ikelihood
estimate; which consists of replacing the functional L in our optimization

A
problem with the functional L defined by

t(v) =

n A=

: v(x;)  exp (—IIVIIZ)

i
where the norn ||+ ||is some appropriate norm on the manifold S. We
consider many interesting maximum penalized likelihood estiﬁators and
show that they are well defined. MWe also show that some maximum penalized
1ikelihood estimatbrs are splines and give some numerical examples.

(See the technical report “Nonparametric Maximum Likelihood Estimation

of Probability Densities bv Penalty Function Methods" by G. F. de Montricher,

R. A. Tania, and J. R. Thompson).

Use of Spatial Information:

Using interpolation polvnomials of odd degree, a method of detecting and
correcting errors in equally spaced data is presented. This method permits
one point to be corrected without contaminating good points. To each point,
the method associdtes an error that measures the distance bet@een this point
and the polynomial that interpolates certain neighboring points. By

selecting the points with the largest error and moving it so that the error
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decreases, a smoother set of data is produced, The ﬁethod is said to be
Tocal because if just-one poitnt is bad, it is'gning to be detected and
corrected without disturbing its neighbors. By successively selecting
the points with the greatest error and modifying them, smoother data is
produced, To measure smoothness and to give another inferpretation to
the error of point, we use the fact that the distance between a point and
| the‘po1ynomia1 of degree 2k-1 that interpolates its 2k neighbors is the
2k-th divided difference. Therefore, by shoothness, we understand the
ﬁummation of the sauares of the k-th divided differences of each point,
and by moving the point with the greatest 2k-th divided difference, the
smoothness will decrease the most. It is proved that ultimately the method
cdnverges,.thereforé the possibility of movina one.point back and forth
is excTuded.

By preprocessing some of the data, a threshold error can be found
| beyond which data is said to be smnoth. -This error is given in terms of
the ratio between the average of all the point errors of the original
data and maximum point error in each iteration. Another interesting
featufe of this method is that it simulates the fairing or smoothing of
data points as perfdrmed bv a human. In such cases, the method will smooth
the data until the error associated with each point is impossible to detect
by human sight. The value of this minimum error is furnished by modern
psychology.

This method, when app]ied to C-1 flight 1ineldata, improved the
performance of classification in each of the different classes considered
by approximatelv 5 percentage points. Here each channel and line of pixels

were independently smoothed, but the method is readily extendable to smoothing

in both physical dimensions.
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It was then combared with spline smoothing. Inladdition to being
considerably faster, our method yields more consistent improvement in
accuracy whereas spline smoothing sometimes pversmoothes the data (see the
report "Error Detection and Data Smoothino Based on local Procedures” by

Y. M. Guerra).

A new approach to the problem of estimating proportions:

The problem of estimating acreages or proportions of the several crops

under consideration has received attention recently in the research literature.
In some acreage estimation problems, it is realistic to assume that the
signatures of the several classes have well-known statistics, while thefr

- proportions are unknown. In estimating the acreage of wheat, for example,

we can model the problem as a two class case, where in class 1 we have wheat,
and in class 2 evervthing else. The basic difficultv in estimating acreaqges
1ies in the fact that the estimate must be based on unclassified noisy data.
If the data are classified with zero error probabilitv, the problem is
trivial, and a simple "relative frequency” estimate is intuitively and
theoretically satisfying. In order to have Baves classification rule,
knowledge of the prior probabilities {or nroportions) is necessary. On the
other hand, in order to estimate the prior probabilities we need to classify
a sufficient amount of data. Haence, in order to have a decent performance
in classification and estimation of priors, it is profitable to look at the
coupled problem of Bayes classification and simultaneous estimation of

prior probabilities.

A renort has been published on this subject, with the title "Optimal
Design with Unknown Priors" by D. Kazakons. In this report, a sequential
scheme for simultanesus classification of data and updating the estimated
prior probabilities is pronosed and analvzed. The probability density

functions under each of the M classes are assumed known, and the prior
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probabilities are assumed unknown and éequentia]]y estimated. It is proved
that the scheme converges to the true value of the prior probabilities,
and hence the adantive classification scheme converges to the Bayes classifier.
Furthermore, a significant property of the scheme is that the error variance
of the estimate of.tﬁe prior probabilities converges to zero as | N .
where N = number of observations. This is significant, because even if we
had a set of N perfectly classified observations, the error variance of the
relative frequency estimate would converge to zero as N-] . The recursive
form of the estimation scheme makes it attractive for situations where the
proportions are varying. The method can “"track" slowly varying proportion
vectors.

Other variations of the prooosed method are currently under investigation.
In a forthcoming report, theoretical and numerical comnarisons of several
related prdportion estimation methods will be presented.

Numerical Optimization of Algorithms:

This tésk is concerned with developing numerically optimal alaorithms for
use in remote sensing analysis. It is our view that the a]Qorithms employed
in remote sensing applications be as accurate as possible since use of
unreliable algorithms can Tead to inaccurate results, and, possibly, very
erroneous interpretations. Such difficulties might be very hard to detect
when they occur and could cause considerable delays. Also, the algorithms
‘used should be as efficient as possible to conserve computer time and thus
the resources of the project. In the past, we have shown how the modified
Cholesky decomposition (MCD) may be émp]oyed in many computatiﬁns where the
covariance matrices and their inverses are used. This has effected a
considerable savings in computation time and increased accuracv over algorithms
brevTous]y in use. Memorandum on the following applications of the MCD are

included in this repart:
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1) Computing the dverage weighted divergence |
2)  Computing the interclass divergence (for use in calculating the
transformed divergence)

3) Performing feature selection using D. Tebbe's criterion.

Feature Selection:

Another minor project in this task is to devise an algorithm for pnerforming
feature selection (or extraction) using the condition numbers of the covariance
matrices as a measure of the separability of the classes. The condition number

of a matrix is defined by
cond (A) = 1IAIT 11AT1]

where larger condition numbers represent matrices whose rows {columns) are
more nearly linearlv dependent. Then the rationale for applying this measure
to the feature se]eétion nrob1eﬁ is to find the subspaces containing most
of the information and thus to have the rows (columns) of the covariance
matrices be as orthogonal as possible.

A program was written to select subsets of channels from C1 data and
to pick a subset of a specified size that minimized the maximum condition
number of the covariance matrices. C]assification was then run using
subsets selected by the average divergence criterion (a d c¢}. Performance
decreased relative to using channels selected by the a d c. As a next step,
we hope to examine how the condition numbers vary as the a d c selects
subsets, hopefully to gain insight into what are suitable criteria to emp1oy

when using condition numbers as a distance measure,
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IV. TASK 3: Review of Technical Reports

G. Austin's memos "Analvsis of LARS Subroutine CLASS and Recommended Coding
Improvements to Reduce Its Execution Time" and "Modifications to ERIPS
Requirements" have been reviewed. A change in priorities prevented other

reports from being reviewed.
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DATE:
TO:
FROM:
RE:

RICE UNIVERSITY .

Institute for. Computer Services

and Applicdtions

MEMORANDUM

Aug. 15, 1973 F\

K. Baker | \

D, L, Van Rooy [Q

Use of the Modified Cholesky Decomposition in Interclass Divergence
Calculation.

To compute the transformed divergence, the interclass divergence

D (i, j) is needed. An efficient and numerically stable method for computing
the D (i, j) is to employ the modified Cholesky decomposition of the covariance
‘matrices. This note will derive the appropriate expressions for doing this.

with

and

I. Derivation

The interclass divergence D (i, j) is given by

D(i,§) = Dy(f,§) + Da(i, ) _ (1)

per [k -k (51D 12

fl

D, (i, 1) 'btrl [(K;1+I<]Tl) (ui—uj) (ui-uj)*] (13)

: : .th . . .
where Ki is the i covariance matrix ; M, the corresponding mean

victor, and tr denotes the trace. D1 can now be simplified to

D, = #tr (Kin")' + %t (Kjk:i"l) - n (1.4)

where n is the order of the K;'s. Now since the K;'s are symmetric,

positive-definite, we may write (modified Cholesky decomposition). - / 7

v
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where L, is unit lower triangular and G; is diagonal. So we can write

[k ] =l L:L;“l 6;' L;I ]
| =t | Lj']' LG, L; L;e'lalfl]
=t [-Tji Gi-T;i GJTI ] | (1.5)
where |
J Tji = Lj-l Li and also is unit. lower triangplar. So (1.5) and

a similar expression may be used to calculate D,, using eq. (1.4)

Now for D‘2 ,we may rewrite (1.3) as
g # -1 -1 ,
Dy = # [ (o) (KD aymw) ] g

Again, then we may use

&
Kl = I"i Gi Li
and define
rnij = ui -—uj
So (1.6) may be rewritten as
* 1 -1 -1 =1 -1 -1 '
Dy =% [mi(Ly G Ly +1L; G L;)my ]
— *  ox-] 1.-1 % -1 -1 -1
= % [rnlel G; Ly my + myL; Gy Ly my

1l
o
| e )

e
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where

and

m..
ij
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II. Computati: n of the D(i,j)

To calculate the interclass divergence D(i,j), first calculate
the modified Cholesky decomposition of the two covaridnce matrices Ki

and K,
]

ES
K; = L; G, L,
%
K. = L. G. L
j I

where Li.and Lj are unit lower triangular matrices and G; and Gj are

. . . Lo _ i _ i
diagonal matrices. Using the notation Ki = {krs } ) Li = {zrs}

and Gi = {g;} we can write

; _
= 1 s =1,2, ...n (2.1)

)
S8
g = gl
1 11
U B Y
s ss_z gp(ﬂ'sp)
p=1 s=1, 2, n
i . s-1_ :
i i i
l’;rs=(krs-zgp’grl:.ﬂ’Sp)/gs
p=1
‘r=s+1,$+2,...n

i
with zrs = 0 for s > r. Similar expressions hold for the elements of
L. and G,. Next we need the elements of T,. and T.. {t‘n } and

j j ji ij Is
ij
{ee ) 79



ji
trr = 1
i i g
r, r-1 r, r-1 r, r-1
r-1 .
i i :i j
£ =4 - Y 2
s 8
rs r p'_s+1rp p

s=r~-2,r-3,...1

" .
and ti‘ls = 0 for s > r. Similar expressions hold for tsz
Now form
e VR S
and .. r-1 .
xi = ml'] - 1?,1 !
r p *p
p:
N Sl S
i ii g
T My z m p
. p=
N [0
where X, = {xr}, xJ = {Xr}

Now D(i,j) is given by
' o [ < Ji 2 5/

o i
D(,J) = z {Z ] rz) gﬂ/gr +

. 2
1 i
+_(Xr ) /gr
‘So the steps to form D(i,j)' are

1. Form Li , G., Lj , and Gj using egs.

1

2,2

(2. 1)

(2.2)
} r:]_, 2’
- (2. 3)
(2. 4)
r=1, 2, n

. 2 > :
t?z) gjg/,glr]
YA

(2.5)

,0&3-



Form T..

it and T, using egs. /(2. 2)

J
Form mij using eq. (2. 3)

Form X and Xj using eqs. (2.4)

Calculate D(i, j) from eq. (2.5)

2.3
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MEMORANDUM

DATE: September 21, 1973
TO: K. Baker

FROM: D. L. Van Rooy \<.\

RE: Use of the Cholesky decomposition in D, Tebbe's feature selection

Analysis

Tebbe's method of feature selection consists of using a without replace-
ment procedure for picking features, and classifying training fields to
"determine” the probability of correct classification. At first, this may
seem to be a quite time-consuming method, However, two points serve
to expedite the procedure, o |

(1) the without replacement procedure greatly
reduces the numbeyr of feature combinations
'to be used

and

(2) by partitioning the covariance matrices and
judiciously saving appropriate results, the
amount of computation may be greatly reduced
both in computing the inverses of these matrices
and classifying the training elements.

In his example, computation time for this method has been comparable
to the exhaustive search, without-replacement divergence calculations,
while classification accuracies have been greater than or equal to those
using this divergence computation results,

The purpose of this note is to show how the execution time of Tebbe's

method may be significantly decreased by employmg the modified Cholesky
decomp051t10n(2) . We have

K = LDL.*
where K is the covariance matrix, L is unit lower triangular (i.e. bi=1,
ﬁ'ij =0 for j > i), D isa diagonal matrix and * denotes ) 025‘



transpose. The logarithm of the density functlon of a class (withina
constant) is

169 = don K| + oo w* KT (xow) W
wheré u is the corresponding mean vector. So there are two problems
to be attacked:

(i) how to eco_nomically obtain L and "Dn
| given L. _4 and Dn-l where the

subscript denotes the order of the matrix

and |
SIS
v O"J

i.e. K}._ 1 is a submatrix of Kj (because

of the without replacement procedure),
v is a vector, and ¢ a scalar.

and

(i) given L and D how does one economlcally
evaluate eq. (1).

Now 1t is easy to show that

L . |
L ((m Z D) o) ,,(na / | (20)
ni = NI | njj/ 1

| j=1 : i=1, 2, ... n-1

(n) (n-1) . . .
y/ = 4 =1, 2, ...
: .w'here L= { £(n)} ana similarly for K and D
n ij 4 ~ )

-also

| (m) _ 4 ) ) (“ 1)

n n
dn =k }: i’- | (3a)



and |
4™ _ d('n 1)

) i=1,2,...n-1 (3b)
1 1 ' :

Thus L differs from Ln 1 only in the last row, and Dn differs from

'Dn_1 only in the qnth position,
We noie fhat
Kol = _I“n Dn LA
= 'Lnl D | (L
= |Pa |
lKn = df]n)._ an_l‘ o | K (4)
Réwriting eq. (1) we have | |
() = 30n IKI-]_1|+ % din)\ + }y* Lg"l Dr_‘l L;ll'y | {(5)
where v = x-pu
Defining z = L;l y
= zg;  with 2? ascalar
v |

we obtain for the last term in (5)

z% D;l A
SR, | 1) | 9
N A LoD

So (3) becomes



() = & (o k| + 2@ 0L 2® ) 4 (a a4 (2 )z' &Y ©

with

i-1 (n-1)
zi = Yl - z zij | ‘z]. i=1, 2, n-1 (7a)
_ j=1
n-1 :
(n) _ (2 |
Zn =Yg Z ty % Tz | “ (7b)
j=1

So we wee that the first two texrms in eq. (6) do not depend on any values
from the nth channel. Thus they may be precomputed and used with( each

of the channels.

Comparing these results with Tebbe's, we note that the classification
of each point will 1require the same amount of computation after the leading -
term (his Ao' z A, )} has been computed. However, the proposed method

(=]
is faster and more numerically stable since
1) no matrix inverses need be computed, and

2) the calculation of f in Tebbe's method requires
| ~ n2 multiplications whereas the corresponding
calculation of 2" requires ~ n2 multiplications.
2 .

=4



Implementation

The above results can be readily utilized in the existing program. The
following describes the changes necessary (see yef. (1) ):

’ - I_ 3 .
1) Tebbe's z is not computed, Instead, the modified

. ) , R
Cholesky decomposition (= L. DL *)} is computed (see
ref (2)}(it could be saved from the prior case where the

~ best n-1 channe%s were coraputed). This yields the

gl 1 and d( used in egs. (2a) & (2b).
o s IR (o)
2) Inplace of the calculations of hise ~ and f will be 'd'ni
. n .
i=1,2, ... n-1 and dfl) from egs. (2a) & (3a) in
(n-1 -1
this report. (Note that the pioduct £J ) §n ) in
eq.- 2a may be precomputed).
. : - . \
3) His . e becomes n drgn)
S . | A (D
4} :I-hs S, is nog én Il\rrl( + z D1 2
n-1 (n"l) o . ' . n-1
e K = I+ 5 (1 2
where I\n-l* Il d; and z Dpg 277 = Z z, 7 4;
, . i=1

~and Z; is given by eq. (’7&)

5) The term — ( £ b - a_)2 in S in his report becomes (2(2) )z/df}n)

where 2(2) is given by eq. (7h). | “(72%
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MEMORANDUM

DATE: November 30, 1973

TO: Ken Baker
FROM: D. L, Van Rooay k

RE: Improved method for computing the average weighted divergence

‘The average weighted divergence may be written, following Quirein_(] ),

as:
m _ : m-1 m
- f ~1 : - ' !
D= Z tr { K; si} n‘z Wi
Coi=1 _ i=1  j=i41 (D)
where Ki is the ith covariance matrix
m is the number of classes
n is the dimensionality
and
m
- ; " *
Sp= ) Wy (Kt el (2)
i=1 |
j#i

with Wij being the weighting factors

and 5 i being the difference of the means between *

classes i and j _ ' :j/_.



Now we note that both the Ki and Si are synmunetric, posivive-definite

matrices. Thus we may write

& : )
Ki = Li Gi I.Ji (modified Cholesky decomposition) (3a)
and Sj = Ri + Ri (3b)

where L,i and Ri are Jower triangular and Gi a dirgonal

ratrix. So the term I\’i-l S; ineq. (1) becomes

-1
- ¢ . qw1 -1 -1 L nE
Kj S =L{" ¢ LT (R + R
and
15y - 1 -1 ok DI IR R
tr (K; S.) = tr (G;° L;" Ry L7 + L7 R LIl G
= tr (Ql + Ql)
= 2tr (Q,)
where
I Y oAl
Qi = G;7 L R, L (4)

Sonow eq. (1) becomes

m | m-1 m ,
D = }: tr(Q) - n Z Z Wi, (5)
=1 i=1 j=i+1

We note that only the diagonal elements of Qi are needed, ﬁ"



o = (g R L) / e (6)
_ e |

where (Q, = (qi )

=N
o
H
P
o
-
S

First form

TF = L]}

i Ri “where Ti is upper triangular

ot

n(n+1) (n+2).

Z multiplies

which requires

-1

Then compute the diagonal elements of Li T, = Ci . This also

1

n(n+1){(n+2)
6

multiplies. So eq. (6) becomes

q = C%j /ff 1;33'”



Thus the total number of multiplies jnvolved is

2n (n+1) (n+ 2}
3

Awhich is | 0O ( ‘2‘“?’“ ) ,

including the multiplications necessary to perform the modified Cholesky
decomposition. |

Algorithm

1). - Compute the S.'s according to eq. (2) usingall chamnels.
i

Also compute the last term in  eq. (3) .

2}, Form the Ri’s uging eq. (3b) .

ik ik

SR S
ij i

:t'1 = 0

Kj J

3). For particular conbinations of channels,pick out the g bmatrices

k! and R

4). Form I_,i and Gi ‘as in eq. (3a).

S -



i_ i i
v = k.. \ )
u=]
. i-1
¢ o= (k. AR A
vi ( V] z u .vu ju) &
u=] '
v = j+1,i+2, ...
i

with f’jj =1 and 4 .,=0 forj>vw

i i

t.., = I,. =

1] 13 i=1,2, n

K kot Jod

jk kj Z ku uj’
u=1

j =%k+1,k+2, ... n

6). Compute the following elements of Ci

j'-]. »

1 i i i

c = t - k.

jk jk z ]P uk
u=1 y
i=1,2, k

J




[ N.B. only the diagonal elements of Ci are needed but the others

are necessary for the calculation of these elements. ]

7). Form |
. m n . . m-1 mn
— . 1 1 - ' 1
D= z 2 c:jj /gj n z 2 ij
i=1  j=1 i=1 =i+l

the average weighted divergence.

Reference
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